A General Class of Nonlinear Normalized LMS-type Adaptive Algorithms

نویسندگان

  • Sudhakar Kalluri
  • Gonzalo R. Arce
چکیده

The Normalized Least Mean Square (NLMS) algorithm is an important variant of the classical LMS algorithm for adaptive linear FIR ltering. It provides an automatic choice for the LMS step-size parameter which aaects the stability, convergence speed and steady-state performance of the algorithm. In this paper, we generalize the NLMS algorithm by deriving a class of Nonlinear Normalized LMS-type (NLMS-type) Algorithms that are applicable to a wide variety of nonlinear lters. These algorithms are developed by choosing an optimal time-varying step-size in the class of LMS-type adaptive nonlinear ltering algorithms. An auxiliary xed step-size can be introduced in the NLMS-type algorithm. However, unlike in the LMS-type algorithm, the bounds on this new step-size for algorithm stability are independent of the input signal statistics. Computer simulations demonstrate that these NLMS-type algorithms have a potentially faster convergence than their LMS-type counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general class of nonlinear normalized adaptive filtering algorithms

The normalized least mean square (NLMS) algorithm is an important variant of the classical LMS algorithm for adaptive linear filtering. It possesses many advantages over the LMS algorithm, including having a faster convergence and providing for an automatic time-varying choice of the LMS stepsize parameter that affects the stability, steady-state mean square error (MSE), and convergence speed o...

متن کامل

A General Class of Nonlinear NormalizedAdaptive Filtering Algorithms 1

The Normalized Least Mean Square (NLMS) algorithm is an important variant of the classical LMS algorithm for adaptive linear ltering. It possesses many advantages over the LMS algorithm, including having a faster convergence and providing for an automatic time-varying choice of the LMS step-size parameter which aaects the stability , steady-state mean square error (MSE) and convergence speed of...

متن کامل

A Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms

In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...

متن کامل

Image Restoration with Two-Dimensional Adaptive Filter Algorithms

Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...

متن کامل

Mean-Square Performance of Adaptive Filter Algorithms in Nonstationary Environments

Employing a recently introduced unified adaptive filter theory, we show how the performance of a large number of important adaptive filter algorithms can be predicted within a general framework in nonstationary environment. This approach is based on energy conservation arguments and does not need to assume a Gaussian or white distribution for the regressors. This general performance analysis ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007